
aiVLE Gym - Separating Agents From

Environment​

GitHub repo: https://github.com/edu-ai/aivle-gym​

Background​

A typical OpenAI Gym agent is structured as below:​

Python

import gym

env = gym.make('CartPole-v0')
for i_episode in range(100):
 observation = env.reset()
 for t in range(100):
 action = decide(observation, reward)
 observation, reward, done, info = env.step(action)
env.close()

1
2
3
4
5
6
7
8
9

where decide refers to any form of decision-making logic (e.g. rules, neural networks, etc.)​

Note that when gym.make() is called, you actually instantiated the simulation environment

where env.reset() and env.step() will reset and take action in the simulation

respectively. In this case, the simulation and agent's decision-making happens within one

program. It works perfectly fine when the task is offline and single-agent. However, consider

the two-agent scenario, we normally write agent code like this:​

❗ OpenAI Gym doesn't officially support multi-agent environment. What's discussed

here is a "convention" of doing multi-agent tasks under Gym API specification.​

https://github.com/edu-ai/aivle-gym

Python

env = gym.make("PongDuel-v0") # Two-player Ping Pong game
for ep_i in range(100):
 done_n = [False for _ in range(env.n_agents)]
 ep_reward = 0

 obs_n = env.reset()
 env.render()

 while not all(done_n):
 # >>>>>> NEW >>>>>>
 action_0 = decide_0(obs_n[0], reward_n[0])
 action_1 = decide_1(obs_n[1], reward_n[1])
 action_n = [action_0, action_1]
 # <<<<<< NEW <<<<<<
 obs_n, reward_n, done_n, info = env.step(action_n)
 ep_reward += sum(reward_n)
 env.render()

 print('Episode #{} Reward: {}'.format(ep_i, ep_reward))
env.close()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Note that in a multi-agent scenario, observation , reward and done are all lists - each

agent should receive their own observation, etc. Similarly, when you call env.step() , you

should provide actions for every agent in this simulation. Such design is acceptable when we

perform these multi-agent experiments offline because we can provide all agent

implementations (i.e. decide_0 and decide_1). However, aiVLE aims to allow users to

submit their agent implementation with nearly zero modification. When it comes to multi-

agent tasks, because you don't need to make decisions for your opponent agents when you're

competing against each other on aiVLE, separating agents (i.e. decision-making logic) from the

environment simulation is the only solution. After this separation, user's submission only

needs to make decision for his own agent, while the environment will be responsible for

collecting actions from other agents, run the simulation and respond new observation and

reward to all agents. From the perspective of each agent, implementation is just like a single-

agent environment. The only difference is that the environment is affected by actions taken by

other agents as well. ​

Diagram for comparison​

💡 Each rounded rectangle represents one individual program.​

Dotted lines represents function calls (arguments/return values).​

Solid lines represent inter-process/thread or even network communication.​

Before separation​

obs_n, reward_n, done_n

E
n
v

action

Agent A

action

Agent B

action_n
action_n = [...]

obs, reward, done

obs, reward, done

splitting obs,
reward, done

After separation:​

E
n
v

obs, reward, done

action

Agent A

action

Agent B
obs, reward, done

Design​

OpenAI Gym API​

An OpenAI Gym compatible environment needs to implement these methods:​

step(action) -> observation, reward, done, info1.

reset() -> observation2.

render(mode)3.

close()4.

seed(seed)5.

And specify these properties:​

action_space​1.

observation_space​2.

reward_range: a 2-tuple of float ​3.

metadata: a dict ​4.

spec​5.

All environments mentioned below are OpenAI Gym compatible (i.e. direct or indirect subclass

of gym.Env). ​

Design goal​

In single-agent case, on the agent side, traditional environment (simulation happens within

agent process) and aiVLE environment (simulation happens outside of agent process)

should be interchangeable. That is:​

1.

Python

local = False
if local:
 env = gym.make("CartPole-v0")
else:
 env = CartPoleAgent()

two env behaves exactly the same

1
2
3
4
5
6
7

On the environment side, author can reuse existing OpenAI Gym compatible environment by

implementing a serializer that serializes action, observation and info to JSON compatible

objects. (e.g. numpy.ndarray cannot be serialized automatically. The author would be

responsible for marshal and unmarshal these objects) Details will be described in the following

section.​

In multi-agent case, on the agent side, the APIs behaves just like normal single-agent

OpenAI Gym environment (i.e. interchangeable). ​

2.

On the environment side, unlike in single-agent case where locally users can opt to use a

normal OpenAI Gym environment by gym.make() , in addition to providing the serializer,

there are a few major differences:​

The base OpenAI Gym compatible multi-agent environment needs to follow these

conventions:​

a.

Has n_agents property that specifies number of agents in this environment​i.

step(action) -> observation, reward, done, info now becomes

step(action_n) -> obs_n, reward_n, done_n, info where xxx_n is a

list of length n with observation/reward/done for each agent​

ii.

Similarly, reset() now returns a list of observations​iii.

As for other properties like action_space , observation_space and

reward_range , to return one object or a list is up to the author - aiVLE Gym

doesn't rely on these properties for communication.​

iv.

Need to provide an additional map of uid_to_idx that maps user ID to agent index

used in the base environment.​

b.

Environment and each participating agent run separately (i.e. instead of in a for-loop of

episodes, a main program collects the action from all agents into a list of action_n

and send it to env.step(action_n) , in this case, each agent calls

env.step(action) with her own action only)​

c.

📣 Q: Why is it OK for the multi-agent environment to have so many differences?​

Ans: OpenAI Gym doesn't officially support multi-agent. We have to define our own

convention to make multi-agent work under the Gym API specification.​

The convention defined above is actually a pretty good balance: most users on our

platform are participants, they use the AgentEnv where our design keeps their

experience exactly the same as single-agent case. They merely needs to start the

multi-agent environment using a provided script before running their own agent(s).​

It's reasonable to ask for a few extra steps for environment authors (e.g. TAs), isn't it?​

Messaging pattern​

In aiVLE Gym implementation, we use a lightweight yet powerful messaging library called

ZeroMQ (https://zeromq.org/). The details of messaging pattern supported by ZeroMQ can be

found here (https://zguide.zeromq.org/docs/chapter2/#Messaging-Patterns). These messaging

patterns are general concepts in computer science in a sense that they are not limited to

ZeroMQ's implementation.​

Whether multi-agent or not, aiVLE Gym adopts request-response pattern. The only difference is

whether the socket is synchronous (REQ for client, REP for server) or asynchronous (DEALER

https://zeromq.org/
https://zguide.zeromq.org/docs/chapter2/#Messaging-Patterns

for client, ROUTER for server). In specific:​

For single-agent: synchronous server (environment) and client (agent). This is obvious.​

For multi-agent: asynchronous server (environment) + synchronous client (agent). This is

because the environment needs to collect actions from all actions before replying to the

agents.​

💡 From the design goal and messaging pattern specification, we conclude that the

server (JudgeEnv) abstract class differs between single-agent task and multi-agent

task, while the client (AgentEnv) abstract class can be shared between two types.​

Serializer (universal): EnvSerializer ​

As shown in the diagram above, arrows represent sending/receiving message. In summary,

such message may include:​

action​•

observation​•

reward: must be float type according to OpenAI Gym​•

done: must be bool type according to OpenAI Gym​•

info​•

That leaves three types of object that can be of arbitrary type and might not be serializable (in

our case, JSON-serializable). Therefore we define the EnvSerializer class that asks user

for marshaling and unmarshaling methods for action, observation and info objects. (One

typical example is observation is given as numpy.array by the environment, while

numpy.array cannot be serialized by json package by default.)​

Six abstract methods that needs to be implemented are:​

action_to_json1.

json_to_action2.

observation_to_json3.

json_to_observation4.

info_to_json5.

json_to_info6.

❗ xxx_to_json are marshaling methods that returns a serializable Python object

(NOT a JSON string)​

Similarly, json_to_xxx are unmarshaling methods that do the reverse (input is

NOT a JSON string)​

Agent-side (universal): AgentEnv ​

Communication​

As mentioned in the "Messaging pattern" section, agent-side client socket is synchronous.​

Socket type: zmq.REQ ​•

Target address: tcp://localhost:{port} where port defaults to 5555​•

It later use this socket to communicate with the simulation process. Note that AgentEnv

automatically uses EnvSerializer to convert objects back and forth so that​

When sending the message via the socket, the message is JSON-serializable​•

Arguments provided to step , and return value of step and reset are of the same type

of the underlying environment (e.g. numpy.array , which is not JSON-serializable by

default)​

•

Concrete class implementation​

Besides the corresponding EnvSerializer , user only need to provide​

action_space​•

observation_space​•

reward_range​•

uid​•

(optional) port: defaults to 5555​•

to implement a concrete class of AgentEnv abstract class. In other words, you don't need to

instantiate the base environment when creating an agent-side environment (after all, the

simulation happens in another program), nor do you need to provide implementation of

step , reset , etc.​

Usage​

A concrete implementation of AgentEnv can be used just like any other OpenAI Gym

compatible environments (given that you launched the JudgeEnv on corresponding port).​

Environment-side (single-agent): JudgeEnvBase and JudgeEnv ​

Communication​

As mentioned in "Messaging pattern" section, single-agent judge environment server socket is

also synchronous.​

Socket type: zmq.REP ​•

Listen address: tcp://*:{port} where port also defaults to 5555​•

Concrete class implementation​

Properties to initialize​•

serializer: an EnvSerializer instance​◦

action_space​◦

observation_space​◦

reward_range​◦

(optional) port: defaults to 5555​◦

Methods to implement (generally, simply reusing base environment's corresponding

method is enough)​

•

step​◦

reset​◦

render​◦

close​◦

seed​◦

Usage​

env.start() will start a while True loop that responds to incoming agent-side

requests.​

Environment-side (multi-agent): JudgeEnvBase and JudgeMultiEnv ​

Design considerations​

Multi-agent case is significantly more complicated because we want the agent-side to behave

exactly the same as a single-agent environment (i.e. only need to provide one action, and

receives one set of observation and reward for each step). Meanwhile we want the library to do

most of the heavy-lifting and leave as little modification work as possible to the environment

author. There are two primary challenges:​

Judge-side should receive and respond to requests asynchronously - it needs to wait for all

agents' actions before stepping forward in the environment, then decide what

observations/rewards/done to respond to each of the agents.​

1.

Certain operations (e.g. reset) must be performed once and only once for each episode, but

since each agent will initialize the episode on their own, judge-side will unavoidably receive

multiple requests.​

2.

To summarize, the judge-side environment needs to implement a "barrier" synchronization

mechanism that not only realizes synchronous rendezvous of agent requests, but also

performs additional tasks upon the "first-comer" and "last-leaver". ​

Therefore, we propose the following deterministic finite automaton (DFA):​

T1

T7

INITIAL

T2
WAIT_RESET

T4

WAIT_ACTIONT5

T6 STEP

T3

CLOSE

E1

States: INITIAL, WAIT_RESET, WAIT_ACTION, STEP, CLOSE​•

Initial state q_0: INITIAL​•

Accept (terminal) states F: CLOSE​•

Input symbols: method (e.g. reset/step/close) and other conditions​•

To make this DFA a mathematically rigorous one, the domain of transition function needs to be

the Cartesian product of input symbols and states. For the sake of simplicity, we omitted many

self-transitioning paths - if transitioning condition is not satisfied, we assume there's a self-

transition path. Meaningful transitions are described below:​

T1​•

condition: method is "reset"​◦

artifact: reset the underlying base Gym environment, label this agent as already reset,

save this agent's router ID​

◦

E1​•

condition: method is "reset" and this sender hasn't reset before​◦

artifact: label this agent as already reset, save this agent's router ID, trigger an input

symbol of "E1" (This trigger is conceptually equivalent immediately checking if we can

transit to the next state. Details can refer to the implementation.)​

◦

T2​•

condition: input symbol of "E1", all agents are labelled as have reset​◦

artifact: send initial observation to all agents, clear reset labels, clear router ID mappings​◦

T3​•

condition: method is "step"​◦

artifact: label this agent as already stepped, save this agent's router ID, save this agent's

action, trigger an input symbol of "T3"​

◦

T4​•

condition: input symbol of "T3", all agents are labelled as have stepped​◦

artifact: step forward in the base environment, send observation/reward/done/info to all

agents, trigger an input symbol of "T4"​

◦

T5​•

condition: input symbol is "T4", some of the agents still have ongoing episode​◦

artifact: clear "have stepped" labels on all agents, clear router ID mappings​◦

T6​•

condition: input symbol is "T4", none of the agents still have ongoing episode​◦

artifact: same as T5​◦

T7 (not implemented as of v0.1)​•

condition: method is "close"​◦

artifact: close the underlying environment​◦

By implementing this DFA carefully, the multi-agent judge environment abstract base class is

capable of handling any order of incoming agent requests. Most importantly, agent-side can

expect responses synchronously therefore keep all their expectations about a normal single-

agent Gym environment. Note that these intricate details are not of users' (both the agent

author and environment author) concern. The environment author only needs to provide

implementations for the abstract methods and our library will handle the rest.​

Communication​

As mentioned in "Messaging pattern" section, multi-agent judge environment server socket is

asynchronous.​

Socket type: zmq.ROUTER ​•

Listen address: tcp://*:{port} where port also defaults to 5555​•

Concrete class implementation​

Properties to initialize​•

serializer: an EnvSerializer instance​◦

action_space​◦

observation_space​◦

reward_range​◦

n_agents: number of agents​◦

uid_to_idx: a map from user ID to agent index (0-based)​◦

(optional) port: defaults to 5555​◦

Methods to implement (generally, simply reusing base environment's corresponding

method is enough)​

•

step​◦

reset​◦

render​◦

seed​◦

close​◦

❗ render , seed and close remain unimplemented as of version 0.1​

Usage​

env.start() will start a while True loop that responds to incoming agent-side

requests.​

