
aiVLE Grader - Evaluating Agents Using Test 

Suites​

GitHub repo: https://github.com/edu-ai/aivle-grader​

❗ Disclaimer: aivle-grader rewrites the existing APIs defined in aivle-runner-kit (with 

lots of modifications and improvements). Details about can be found in "Runner-kit" 

section of ​ Deep dive into existing aiVLE system ​ ​

Design​

Objectives​

The objective of this design is to provide a modular framework such that when writing a grader 

for a new environment:​

most of the time, using framework's built-in components is sufficient​1.

if a custom component is required, each component is self-sufficient and straightforward 

without complicated inter-dependencies​

2.

For the first point, we provide TestCase  components for both Gym and aiVLE Gym 

environments in both single-agent and multi-agent tasks. We also provide several 

Evaluator  components that cover the most basic evaluation metrics for an agent. Most 

importantly, all built-in components are well-documented with runnable complete example 

code. The source code itself can help user learn how to extend their own components.​

For the second point, we carefully design our abstractions so that each component's purpose 

is clear. We only expose parts that are necessary for modification and extension as abstract 

methods while handling the rest as either concrete implementation in the abstract base class 

(e.g. evaluate  in TestCase ) or entirely concrete class (e.g. TestSuite ).​

Overview​

There are 3 components of user's concern:​

agent: replaced by student's submission​•

evaluator: records the history of simulation, give scores from the history​•

test cases: runs the underlying environment (Gym compatible is sufficient. I also provide 

examples on how to adapt aiVLE Gym environments. The process is very straightforward as 

•

https://github.com/edu-ai/aivle-grader
https://pvzuww1vqx.larksuite.com/docs/docusR9orMWOxKfdHHKZPmz856e#s3eeOl


aiVLE Gym is also Gym compatible.) with runtime and episode count limit, attaches 

evaluator to the simulation to produce evaluation results.​

A typical example of grader program looks like this:​

Python

env = gym.make("...")  # any OpenAI Gym compatible environment is acceptable
evaluator = RewardEvaluator()
test_cases = [ReinforcementLearningTestCase(...), ...]
test_suite = TestSuite(suite_id="...", cases=test_cases)
eval_result = test_suite.run(create_agent)
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Since every abstraction we make should be justified, here's the design considerations for each 

of them. In particular, I try to answer these two questions:​

How can we use this abstraction to improve extensibility and re-usability?​•

What happens if this abstraction is removed?​•

Agent​

Agent  only contains two methods: "reset" to reset internal states, "step" to return an action 

from provided observation. This is mostly for security reasons: the only student submission we 

reference is the Agent object. We deliberately hide the access to actual simulation environment 

from Agent object so that they don't have a chance of unintentionally or maliciously changing 

the random seed or closing/resetting the environment.​

Evaluator​

Our framework assumes Gym environment, therefore the following loop is applicable to all 

candidate environments:​

action

agent

reward

observation

environment



action := decide(observation, reward)

agent

observation, reward := env.step(action)

environment

This is important because, to evaluate the performance of an agent, all information that the 

evaluator needs to give a verdict is observation and reward - which conveniently is always 

returned by the env.step(action)  method. Therefore we can separate the evaluation 

logic out of the simulation loop by:​

reset the evaluator before starting an episode so that the evaluator knows when to divide its 

records by episode​

•

step the evaluator using all information received (i.e. full_state dict ) after every step​•

This design makes evaluators highly reusable. For example, many tasks are evaluated by the 

average reward received across all episodes. If your test case happens to adopt this evaluation 

metric, simply using the built-in RewardEvaluator  and passing a "reward" field in the 

full_state  argument would be sufficient. On the other hand, without such abstraction, 

test suite authors will find themselves writing the same logic (of saving metrics data for 

evaluation) over and over again. This hurts the readability of TestCase  implementation as 

well.​

Test Cases​

TestCase  abstraction exists for two reasons:​

To provide a template: for user to implement a test case, he always needs to provide 

agent(s), Gym environment and an evaluator. TestCase  abstract base class enforces 

these properties to be initialized in the constructor. This will force all concrete 

implementations to use the same variable names for common properties, which greatly 

improves readability.​

•

To offload certain chore away from the user: to run a simulation locally, we normally don't 

care about time limit and memory limit. However, aiVLE grader runs on a shared server that 

doesn't allow unlimited resource hogging. These restrictions can be dealt with by the 

framework in the abstraction class so that users can focus on writing normal simulation 

loops.​

•

This design makes writing test cases for any environment very straightforward: simply copying 

over code that you use to test the environment and agent locally is almost everything you need 



to do. The only additional labor is to put reset/step/get_result from the evaluator on the right 

place.​

Multi-agent Design​

// TODO​

Python

judge_env = PongJudgeEnv()
judge_proc = Process(target=judge_env.start, args=())
judge_proc.start()

tc = MultiAgentTestCase
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Documentation​

Agent  abstract class​

To be considered a gradable agent, one needs to provide:​

step(state) : returns an action from observed state​•

reset() : resets internal state for a new episode - reset  is guaranteed to be called once 

before every episode​

•

Evaluator  abstract class​

💡 You may consider Evaluator  as a storage of evaluation results (most of the time, 

equivalent to reward) for each episode/run. At the end of evaluation (after n_runs  

episodes concluded), you can get a summary of this evaluation session using 

get_result()  method.​

There are 4 abstract methods that need to be implemented:​

reset() : called once at the beginning of each run​•

step(full_state: dict) : called once after taking one action in the environment. You 

should give everything you received from env.step  in full_state  argument. The 

evaluator will decide which information to use.​

•

get_result() : returns an EvaluationResult  object that summarizes all executed 

episodes​

•

Built-in concrete class​



You may refer to these concrete implementations before creating your own custom concrete 

subclass.​

RewardEvaluator: computes average reward across episodes​•

ensure reward  field is provided in full_state ​◦

StepCountEvaluator: computes average steps across episodes​•

no special requirements​◦

TestCase  abstract class​

There are 6 properties that need initialization:​

case_id​•

time_limit​•

n_runs: number of episodes to run​•

agent_init: init params passed to __init__  method of Agent ​•

env: Gym compatible environment​•

evaluator: Evaluator  object​•

There is one abstract method that needs to be implemented:​

run: runs the env  environment for n_runs  times with evaluator  attached to the 

execution.​

•

Built-in concrete class​

You may refer to these concrete implementations before creating your own custom concrete 

subclass.​

ReinforcementLearningTestCase​•


